2024
DOI: 10.1090/proc/16862
|View full text |Cite
|
Sign up to set email alerts
|

Bounds for syzygies of monomial curves

Giulio Caviglia,
Alessio Moscariello,
Alessio Sammartano

Abstract: Let Γ ⊆ N \Gamma \subseteq \mathbb {N} be a numerical semigroup. In this paper, we prove an upper bound for the Betti numbers of the semigroup ring of Γ \Gamma which depends only on the width of Γ \Gamma , that is, the difference between the largest and the smallest generator of Γ \Gamma . In this way, we make progress towards a conjecture of Herzog and Stamate [J. Algebra 418 (2014), pp. 8–28]. Moreov… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 7 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?