Successful fertilization requires viable and
functional spermatozoa to recognize and fuse with
the oocyte. In most mammalian species, mature
spermatozoa are not capable of fertilizing the
oocytes immediately after ejaculation. However,
unlike somatic cells, spermatozoa, after leaving
the testis, are transcriptionally and
translationally silent; therefore, upon completion
of spermiogenesis, spermatozoa carry only a
minimal amount of essential proteins on their
membranes as well as within their restricted
volume of cytoplasm. To develop into a fully
functional and competent sperm that is capable of
successful fertilization, modifications of the
sperm membrane surface during its transit in the
reproductive tracts is critical. These
post-spermatogenesis modifications advance the
maturation of epididymal spermatozoa. In addition,
components secreted into the lumen of the
reproductive tracts that are later added onto the
sperm membrane surface also regulate (inhibit or
activate) the functions of the spermatozoa. This
acquisition of additional proteins from the
reproductive tracts may compensate for the
inactivity of morphologically mature spermatozoa.
In this review, we discuss the contributions of
the male and female genital tracts to
modifications of the sperm membrane surface at
different stages of fertilization.