Combinatorial optimization problems are typically NP-hard, due to their intrinsic complexity. In this paper, we propose a novel chaotic particle swarm optimization algorithm (CS-PSO), which combines the chaos search method with the particle swarm optimization algorithm (PSO) for solving combinatorial optimization problems. In particular, in the initialization phase, the priori knowledge of the combination optimization problem is used to optimize the initial particles. According to the properties of the combination optimization problem, suitable classification algorithms are implemented to group similar items into categories, thus reducing the number of combinations. This enables a more efficient enumeration of all combination schemes and optimize the overall approach. On the other hand, in the chaos perturbing phase, a brand-new set of rules is presented to perturb the velocities and positions of particles to satisfy the ideal global search capability and adaptability, effectively avoiding the premature convergence problem found Communicated by V. Loia.