Changes in thermomechanical behavior with structural relaxation taking place in epoxy glasses were studied. Differential scanning calorimetry measurements and thermostimulated strain recovery tests were performed for specimens deformed and then aged under fixed strain. In the course of heating, the specimens started to absorb thermal energy, whereas plastic strain was still stable. At higher temperatures, plastic strain started recovery, which was accompanied by exothermic behavior of the specimen. With an increase in the aging duration, the endothermic peak signified and moved to a higher temperature. These results indicated that the longer the aging duration was, the harder the plastic strain and strain energy were frozen in the glassy structure. This freeze-strain phenomenon was observed for crosslinked epoxy glass, as well as polymeric glasses with linear molecular structures, aged under strain.