The platform will undergo maintenance on Sep 14 at about 7:45 AM EST and will be unavailable for approximately 2 hours.
Oceans'10 Ieee Sydney 2010
DOI: 10.1109/oceanssyd.2010.5603660
|View full text |Cite
|
Sign up to set email alerts
|

Biomimetic mechanical design for soft-bodied underwater vehicles

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
10
0

Year Published

2012
2012
2022
2022

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 16 publications
(11 citation statements)
references
References 14 publications
1
10
0
Order By: Relevance
“…This discipline is steeply growing, and from the seminal review paper of Trivedi et al (2008) the field was subject to several evolutions; to date, the most recent review paper on soft robotics (Rus and Tolley, 2015) identifies four possible application domains for soft robots: locomotion, manipulation, wearable, and soft cyborgs. This review agrees with our survey on the most relevant domains influenced by soft robotic, which identified three niches: (1) the terrestrial locomotion, where a great number of bio-inspired (Belanger et al, 2000;Mezoff et al, 2004;Lin et al, 2013;Umedachi et al, 2016) (inspired by worms, caterpillars, and their gaits) (Jayaram and Full, 2016) (insects) (Chrispell et al, 2013;Cicconofri and DeSimone, 2015) (snakes) or build from scratch robots (Kim et al, 2014;Li et al, 2016) are under development; (2) the underwater locomotion (Fiazza et al, 2010), mainly inspired by fishes (Clark et al, 2015), turtles (Song et al, 2016), crabs (Calisti et al, 2016), chephalopods (Arienti et al, 2013;Cianchetti et al, 2015), rays (Urai et al, 2015), or other aquatic animals; and (3) manipulation, either at the level of grippers (Manti et al, 2015;Fakhari et al, 2016;Shintake et al, 2016), arms Elango and Faudzi, 2015;Katzschmann et al, 2015;Deashapriya et al, 2016;Sun et al, 2016), or other devices (Deng et al, 2016).…”
Section: Scenarios Definitionsupporting
confidence: 88%
“…This discipline is steeply growing, and from the seminal review paper of Trivedi et al (2008) the field was subject to several evolutions; to date, the most recent review paper on soft robotics (Rus and Tolley, 2015) identifies four possible application domains for soft robots: locomotion, manipulation, wearable, and soft cyborgs. This review agrees with our survey on the most relevant domains influenced by soft robotic, which identified three niches: (1) the terrestrial locomotion, where a great number of bio-inspired (Belanger et al, 2000;Mezoff et al, 2004;Lin et al, 2013;Umedachi et al, 2016) (inspired by worms, caterpillars, and their gaits) (Jayaram and Full, 2016) (insects) (Chrispell et al, 2013;Cicconofri and DeSimone, 2015) (snakes) or build from scratch robots (Kim et al, 2014;Li et al, 2016) are under development; (2) the underwater locomotion (Fiazza et al, 2010), mainly inspired by fishes (Clark et al, 2015), turtles (Song et al, 2016), crabs (Calisti et al, 2016), chephalopods (Arienti et al, 2013;Cianchetti et al, 2015), rays (Urai et al, 2015), or other aquatic animals; and (3) manipulation, either at the level of grippers (Manti et al, 2015;Fakhari et al, 2016;Shintake et al, 2016), arms Elango and Faudzi, 2015;Katzschmann et al, 2015;Deashapriya et al, 2016;Sun et al, 2016), or other devices (Deng et al, 2016).…”
Section: Scenarios Definitionsupporting
confidence: 88%
“…Fishes can create great propulsion forces due to their passive properties and interaction with the surrounding fluid [16]. Inspired by that, we developed a ray-mimicking soft prototype robot that explores the potential of a passive dynamic mechanism.…”
Section: Ray-mimicking Pectoral Finmentioning
confidence: 99%
“…Consequently, significant research effort has been applied to mimicking biological propulsion systems, for example see DLVCUUV robotic tuna [37], robotic dolphin [38], Finnegan robotic turtle [39], and soft-bodied robot fish [40]. However, current actuator efficiencies mean that the electric motor and propeller combination still provides a comparable level of total propulsion system efficiency, with comparatively easy control and design [41].…”
Section: F Propulsor and Actuationmentioning
confidence: 99%