As a core component of anion exchange membrane (AEM) fuel cells, it has practical significance to improve the performance of AEMs. However, it is difficult to obtain AEM with both good stability and high conductivity. In this study, a series of AEMs were prepared by chloromethylation, quaternization, and crosslinking reactions. The quaternization reaction was carried out first to ensure that there are abundant quaternary ammonium groups on AEM and enhance the conductivity of membrane. N,N,N′,N′‐tetramethylethylenediamine was used as a crosslinker to improve membrane stability and mechanical property. A simple, mild, and cost‐effective AEM synthetic route was developed. This strategy achieves a certain balance of electrochemical and physical properties. The effect of the crosslinking reactions on the property of membrane was evaluated. Crosslinked membranes have better dimensional stability (water uptake: 20.2% and swelling ratio: 2.1%), mechanical properties (55.84 MPa), and alkaline stability because crosslinked structures result in large steric hindrance. The mutually independent quaternization and crosslinking reaction do not affect the electrochemical performance of membranes; in the crosslinking reaction stage, crosslinker also reacted as quaternization agent and increased the number of reactive groups in AEM. Thus, the resulting crosslinked AEM exhibits higher ion exchange capacity and ionic conductivities (46.4 mS cm−1). © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 48169.