Bias Correction of IMERG Data in the Mountainous Areas of Sumatra Based on A Single Gauge Observation
Ravidho Ramadhan,
Marzuki Marzuki,
Wiwit Suryanto
et al.
Abstract:The performance of surface precipitation data from satellite precipitation products (SPPs) in mountainous areas has greater error and bias than in plain areas. In this study, linear scaling (LS), local intensity (LOCI), power transformation (PT), and cumulative distribution function (CDF) methods are used to correct the bias of Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG) data in the mountainous region of Sumatra based on long-term and high-resolution optical rain gauge (O… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.