This paper provides an exposition of the structuralist approach to underdetermination, which aims to resolve the underdetermination of theories by identifying their common theoretical structure. Applications of the structuralist approach can be found in many areas of philosophy. I present a schema of the structuralist approach, which conceptually unifies such applications in different subject matters. It is argued that two classic arguments in the literature, Paul Benacerraf’s argument on natural numbers and W. V. O. Quine’s argument for the indeterminacy of translation, can be analyzed as instances of the structuralist schema. These two applications illustrate different kinds of conclusions that can be drawn through the structuralist approach; Benacerraf’s argument shows that we can derive an ontological conclusion about the given subject matter, while Quine’s structuralist approach leads to a semantic conclusion about how to determine linguistic meanings given radical translation. Then, as a case study, I review a recent debate in metaphysics between Shamik Dasgupta, Jason Turner, and Catharine Diehl to consider the extent to which different instances of the structuralist schema are conceptually unified. Both sides of the debate can be interpreted as utilizing the structuralist approach; one side uses the structuralist approach for an ontological conclusion, while the other side relies on a semantic conclusion. I argue that this has a strong dialectical consequence, which sheds light on the conceptual unity of the structuralist approach.