Pavement condition data are collected by agencies to support pavement management system (PMS) for decision-making purpose as well as to construct performance model. The cost of pavement data collection increases with the increase of survey frequencies. However, a lower monitoring frequency could lead to unreliable maintenance decisions. It is necessary to understand the influence of monitoring frequencies on maintenance decision by considering the reliability of performance prediction models. Because of different maintenance conditions of urban roads and highways, their performance show different trends. In this paper, the influence of pavement monitoring frequency on the pavement performance models was investigated. The results indicate that low collection frequencies may result in delay in maintenance action by overestimating pavement performance. The collection frequency for Pavement Condition Index (PCI) can be reduced without compromising the accuracy of performance model, more work should be done to ensure the PCI data quality, thus to guarantee the rationality of maintenance decisions. Effect of frequency reduction on pavement performance (IRI) models of urban roads seems greater than on pavement performance (IRI) models of highways, which may lead to heavier monitoring work for urban roads management. This paper provided an example which demonstrated how a comparative analysis can be performed to determine whether the current data collection plan can provide sufficient data for time series analysis.