2021 Ieee Africon 2021
DOI: 10.1109/africon51333.2021.9570995
|View full text |Cite
|
Sign up to set email alerts
|

BER Performance of Antenna Sequence Modulation (ASM)

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
5
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
2
2

Relationship

1
3

Authors

Journals

citations
Cited by 4 publications
(5 citation statements)
references
References 17 publications
0
5
0
Order By: Relevance
“…Luckily, estimation of coloured noise is possible and subsequent noise whitening procedure is carried out. After noise whitening, we have [10–12], boldRn1/2boldŷ=boldRn1/2γ¯GboldĤboldxjq+boldRn1/2boldn̂RhE=boldRn1/2boldRhboldRnH/2boldĤw=boldRhEH:whitened.\begin{eqnarray} {\bf R}_n^{-1/2}\widehat{{\bf y}} &=& {\bf R}_n^{-1/2} \sqrt {\frac{\overline{\gamma }}{G}} \widehat{{\bf H}} {\bf x}_{jq}+{\bf R}_n^{-1/2}\widehat{ {\bf n}}\nonumber\\ {\bf R}_h^E&=&{\bf R}_n^{-1/2} {\bf R}_h {\bf R}_n^{-H/2}\nonumber\\ \widehat{{\bf H}}_w &=& {\bf R}_h^E {\bf H}: \quad whitened. \end{eqnarray}At the receiver, the signal model can be rewritten as boldy=γ¯Gtrueĥjtruexjq+n,boldĥj=trueμjεjboldhj,\begin{eqnarray} {\bf y}&=& \sqrt {\frac{\overline{\gamma }}{G}} \widehat{{\bf h}} _j \vec{x}_{jq}+ {\bf {n}}, \nonumber\\ \widehat{{\bf h}}_j &=& {\vec{\mu }}_j \sqrt {\vec{\epsilon }_j }{\bf h}_j, \end{eqnarray}where boldhj${\bf h}_j$ denotes the effective column of the matrix …”
Section: Lsm System Modelmentioning
confidence: 99%
See 4 more Smart Citations
“…Luckily, estimation of coloured noise is possible and subsequent noise whitening procedure is carried out. After noise whitening, we have [10–12], boldRn1/2boldŷ=boldRn1/2γ¯GboldĤboldxjq+boldRn1/2boldn̂RhE=boldRn1/2boldRhboldRnH/2boldĤw=boldRhEH:whitened.\begin{eqnarray} {\bf R}_n^{-1/2}\widehat{{\bf y}} &=& {\bf R}_n^{-1/2} \sqrt {\frac{\overline{\gamma }}{G}} \widehat{{\bf H}} {\bf x}_{jq}+{\bf R}_n^{-1/2}\widehat{ {\bf n}}\nonumber\\ {\bf R}_h^E&=&{\bf R}_n^{-1/2} {\bf R}_h {\bf R}_n^{-H/2}\nonumber\\ \widehat{{\bf H}}_w &=& {\bf R}_h^E {\bf H}: \quad whitened. \end{eqnarray}At the receiver, the signal model can be rewritten as boldy=γ¯Gtrueĥjtruexjq+n,boldĥj=trueμjεjboldhj,\begin{eqnarray} {\bf y}&=& \sqrt {\frac{\overline{\gamma }}{G}} \widehat{{\bf h}} _j \vec{x}_{jq}+ {\bf {n}}, \nonumber\\ \widehat{{\bf h}}_j &=& {\vec{\mu }}_j \sqrt {\vec{\epsilon }_j }{\bf h}_j, \end{eqnarray}where boldhj${\bf h}_j$ denotes the effective column of the matrix …”
Section: Lsm System Modelmentioning
confidence: 99%
“…From previous work, the overall SEP for SM system,PSEPSM${{\rm \ }P}_{SEP \ SM}$ is used to derive the bit error probability (BEP) simply as PBEPPSEP(SM)bmax${{\rm \ }P}_{BEP}\le \frac{{{\rm \ }P}_{SEP}(SM)}{b_{max}}$, where bmax$b_{max}$ is the total number of conveyable bits in SM [11, 19]. Then, the BEP for SM system may then be rewritten as [19] PBEPbadbreak=PSEPSMbmaxgoodbreak=PSIMObmaxφegoodbreak=Pserbe,\begin{equation} {\rm P}_{BEP}=\frac{{{\rm \ }P}_{SEP\ SM}\ }{b_{max}}=\frac{{{\rm \ }P}_{SIMO}\ }{b_{max}}{\varphi }_e=\frac{{{\rm \ }P}_{ser}\ }{b_e}, \end{equation}where φe${\varphi }_e$ represents the coefficient of increase in error for SM above that of a SIMO space and be=bmaxφe$b_e=\frac{b_{max}}{{\varphi }_e}$ is the density of bits in error for the system.…”
Section: System Performance Analysismentioning
confidence: 99%
See 3 more Smart Citations