2021
DOI: 10.1038/s41567-021-01425-7
|View full text |Cite
|
Sign up to set email alerts
|

Bayesian parameter estimation using conditional variational autoencoders for gravitational-wave astronomy

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
51
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
7
2

Relationship

0
9

Authors

Journals

citations
Cited by 107 publications
(56 citation statements)
references
References 43 publications
0
51
0
1
Order By: Relevance
“…Past studies using machine-learning techniques for amortized GW parameter inference (Gabbard et al, 2019;Chua & Vallisneri, 2020;Green & Gair, 2021;Delaunoy et al, 2020) all consider simplified problems (e.g., only a subset of parameters, a simplified posterior, or a limited treatment of detector noise). In contrast, the GNPE-based study in Dax et al (2021) is the only one to treat the full amortized parameter inference problem with accuracy matching standard methods.…”
Section: Related Workmentioning
confidence: 99%
See 1 more Smart Citation
“…Past studies using machine-learning techniques for amortized GW parameter inference (Gabbard et al, 2019;Chua & Vallisneri, 2020;Green & Gair, 2021;Delaunoy et al, 2020) all consider simplified problems (e.g., only a subset of parameters, a simplified posterior, or a limited treatment of detector noise). In contrast, the GNPE-based study in Dax et al (2021) is the only one to treat the full amortized parameter inference problem with accuracy matching standard methods.…”
Section: Related Workmentioning
confidence: 99%
“…Rapid amortized methods such as NPE have the potential to transform GW data analysis. However, due to the complexity and high dimensionality 5 of GW data, it has been a challenge (Gabbard et al, 2019;Chua & Vallisneri, 2020;Green & Gair, 2021;Delaunoy et al, 2020) to obtain results of comparable accuracy and completeness to classical samplers. We now show how GNPE can be used to exploit equivariances to greatly simplify the inference problem and achieve for the first time performance indistinguishable from "ground truth" stochastic samplers-at drastically reduced inference times.…”
Section: Gravitational-wave Parameter Inferencementioning
confidence: 99%
“…As described in recent reviews (Huerta and Zhao, 2020 ; Cuoco et al, 2021 ), AI and high performance computing (HPC) as well as edge computing have been showcased to enable gravitational wave detection with the same sensitivity than template-matching algorithms, but orders of magnitude faster and at a fraction of the computational cost. At a glance, recent AI applications for gravitational wave astrophysics includes classification or signal detection (Gabbard et al, 2018 ; George and Huerta, 2018a , b ; Dreissigacker et al, 2019 ; Fan et al, 2019 ; Miller et al, 2019 ; Rebei et al, 2019 ; Beheshtipour and Papa, 2020 ; Deighan et al, 2020 ; Dreissigacker and Prix, 2020 ; Krastev, 2020 ; Li et al, 2020a ; Schäfer et al, 2020 , 2021 ; Skliris et al, 2020 ; Wang et al, 2020 ; Gunny et al, 2021 ; Lin and Wu, 2021 ; Schäfer and Nitz, 2021 ), signal denoising and data cleaning (Shen et al, 2019 ; Ormiston et al, 2020 ; Wei and Huerta, 2020 ; Yu and Adhikari, 2021 ), regression or parameter estimation (Gabbard et al, 2019 ; Chua and Vallisneri, 2020 ; Green and Gair, 2020 ; Green et al, 2020 ; Dax et al, 2021a , b ; Shen et al, 2022 ) Khan and Huerta 1 , accelerated waveform production (Chua et al, 2019 ; Khan and Green, 2021 ), signal forecasting (Lee et al, 2021 ; Khan et al, 2022 ), and early warning systems for gravitational wave sources that include matter, such as binary neutron stars or black hole-neutron star systems (Wei and Huerta, 2021 ; Wei et al, 2021a ; Yu et al, 2021 ).…”
Section: Introductionmentioning
confidence: 99%
“…This would be especially beneficial for searches that require low latency, such as the early warning of binary neutron star mergers (Baltus et al, 2021 ; Yu et al, 2021 ). Other successful usage of ML techniques in GW astronomy include the identification of various GW events (Bayley et al, 2020 ; Chan et al, 2020 ; Dreissigacker and Prix, 2020 ; Huerta et al, 2020 ; Krastev, 2020 ; Schäfer et al, 2020 ; Wong et al, 2020 ; Beheshtipour and Papa, 2021 ; Chang et al, 2021 ; Chatterjee et al, 2021 ; López et al, 2021 ; Marianer et al, 2021 ; Mishra et al, 2021 ; Saiz-Pérez et al, 2021 ; Wei and Huerta, 2021 ; Yan et al, 2021 ), source parameter estimations (Gabbard et al, 2019 ; Chatterjee et al, 2020 ; Chua and Vallisneri, 2020 ; Green et al, 2020 ; Talbot and Thrane, 2020 ; Álvares et al, 2021 ; D'Emilio et al, 2021 ; Krastev et al, 2021 ; Williams et al, 2021 ; Xia et al, 2021 ), and detector characterization (Biswas et al, 2020 ; Colgan et al, 2020 ; Cuoco et al, 2020 ; Essick et al, 2020 ; Torres-Forné et al, 2020 ; Mogushi, 2021 ; Sankarapandian and Kulis, 2021 ; Soni et al, 2021 ; Zhan et al, 2021 ). Besides GW astronomy, the usage of CNNs has led to breakthroughs in a variety of topics related to time-series forecasting and classification (e.g., Refs.…”
Section: Introductionmentioning
confidence: 99%