Myosins are a crucial motor protein associated with the actin cytoskeleton in eukaryotic cells. Structurally, myosins form heteromeric complexes, with smaller light chains such as calmodulin (CaM) bound to isoleucine–glutamine (IQ) domains in the neck region. These interactions facilitate mechano-enzymatic activity. Recently, we identified Arabidopsis CaM-like (CML) proteins CML13 and CML14 as interactors with proteins containing multiple IQ domains, that function as the myosin VIII light chains. This study demonstrates that CaM, CML13, and CML14 specifically bind to the neck region of all 13 Arabidopsis myosin XI isoforms, with some preference among the CaM/CML-IQ domains. Additionally, we observed distinct residue preferences within the IQ domains for CML13, CML14, and CaM.In vitroexperiments revealed that recombinant CaM, CML13, and CML14 exhibit calcium-independent binding to the IQ domains of myosin XIs. Furthermore, when co-expressed with MAP65-1–myosin fusion proteins containing the IQ domains of myosin XIs, CaM, CML13, and CML14 co-localize to microtubules.In vitroactin motility assays demonstrated that recombinant CML13, CML14, and CaM function as myosin XI light chains. Acml13T-DNA mutant exhibited a shortened primary root phenotype that was complemented by the wild-type CML13 and was similar to that observed in a triple myosin XI mutant (xi3KO). Overall, our data indicate that Arabidopsis CML13 and CML14 are novel myosin XI light chains that likely participate in a breadth of myosin XI functions.HighlightMyosin XI proteins play a crucial role in the plant cytoskeleton, but their associated light chains have remained unidentified. Here, we show that calmodulin-like proteins, CML13 and CML14, serve as light chains for myosin XI, similar to their role for myosin VIII proteins