The catarrhine primates were the first group of species studied with comparative molecular cytogenetics. Many of the fundamental techniques and principles of analysis were initially applied to comparisons in these primates, including interspecific chromosome painting, reciprocal chromosome painting and the extensive use of cloned DNA probes for evolutionary analysis. The definition and importance of chromosome syntenies and associations for a correct cladistics analysis of phylogenomic relationships were first applied to catarrhines. These early chromosome painting studies vividly illustrated a striking conservation of the genome between humans and macaques. Contemporarily, it also revealed profound differences between humans and gibbons, a group of species more closely related to humans, making it clear that chromosome evolution did not follow a molecular clock. Chromosome painting has now been applied to more that 60 primate species and the translocation history has been mapped onto the major taxonomic divisions in the tree of primate evolution. In situ hybridization of cloned DNA probes, primarily BAC-FISH, also made it possible to more precisely map breakpoints with spanning and flanking BACs. These studies established marker order and disclosed intrachromosomal rearrangements. When applied comparatively to a range of primate species, they led to the discovery of evolutionary new centromeres as an important new category of chromosome evolution. BAC-FISH studies are intimately connected to genome sequencing, and probes can usually be assigned to a precise location in the genome assembly. This connection ties molecular cytogenetics securely to genome sequencing, assuring that molecular cytogenetics will continue to have a productive future in the multidisciplinary science of phylogenomics.