2021
DOI: 10.48084/etasr.4101
|View full text |Cite
|
Sign up to set email alerts
|

Backstepping Terminal Sliding Mode MPPT Controller for Photovoltaic Systems

Abstract: In this paper, a new Maximum Power Point Tracking (MPPT) control for a Photovoltaic (PV) system is developed based on both backstepping and terminal sliding mode approaches. This system is composed of a solar array, a DC/DC boost converter, an MPPT controller, and an output load. The Backstepping Terminal Sliding Mode Controller (BTSMC) is used via a DC-DC boost converter to achieve maximum power output. The stability of the closed-loop system is guaranteed using the Lyapunov method. This novel approach provid… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
1
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(1 citation statement)
references
References 23 publications
0
1
0
Order By: Relevance
“…In the presence of large uncertainties, controller gain has to be increased which enhances chattering effect (Skik and Abbou, 2016). Backstepping terminal sliding mode (BTSM) controller is discussed in (Behih and Attoui, 2021) to extract maximum power of PV system. However, it can only track MPPT curve and fails to provide controlled compensation to variations in irradiance and temperature.…”
mentioning
confidence: 99%
“…In the presence of large uncertainties, controller gain has to be increased which enhances chattering effect (Skik and Abbou, 2016). Backstepping terminal sliding mode (BTSM) controller is discussed in (Behih and Attoui, 2021) to extract maximum power of PV system. However, it can only track MPPT curve and fails to provide controlled compensation to variations in irradiance and temperature.…”
mentioning
confidence: 99%