2020
DOI: 10.1002/ange.202008724
|View full text |Cite
|
Sign up to set email alerts
|

B‐Site Co‐Alloying with Germanium Improves the Efficiency and Stability of All‐Inorganic Tin‐Based Perovskite Nanocrystal Solar Cells

Abstract: Colloidal lead-free perovskiten anocrystals have recently received extensive attention because of their facile synthesis,t he outstanding size-tunable optoelectronic properties,and less or no toxicity in their commercial applications. Tin(Sn) has so far led to the most efficient lead-free solar cells, yet showing highly unstable characteristics in ambient conditions.H ere,w ep ropose the synthesis of all-inorganic mixture Sn-Ge perovskite nanocrystals,demonstrating the role of Ge 2+ in stabilizing Sn 2+ cation… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
13
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 17 publications
(15 citation statements)
references
References 57 publications
1
13
0
1
Order By: Relevance
“…However, the rapid oxidation rate of Ge has proven to be beneficial in some cases. For example, a significantly stable and more efficient lead‐free device can be obtained by adding Ge to Sn‐based devices 168 . This phenomenon is discussed in more detail in the next section.…”
Section: Reliability Of Pb‐free Perovskitesmentioning
confidence: 97%
“…However, the rapid oxidation rate of Ge has proven to be beneficial in some cases. For example, a significantly stable and more efficient lead‐free device can be obtained by adding Ge to Sn‐based devices 168 . This phenomenon is discussed in more detail in the next section.…”
Section: Reliability Of Pb‐free Perovskitesmentioning
confidence: 97%
“…Reproduced with permission. [ 122 ] Copyright 2020, Wiley‐VCH. e) Schematic illumination of CsSn 0.5 Ge 0.5 I 3 PSC structure and corresponding energy‐level diagram.…”
Section: Strategies For Improving the Performance And Stability Of Cs...mentioning
confidence: 99%
“…d) Cross-sectional SEM image of CsSnGeI 3 PNCs solar cell. Reproduced with permission [122]. Copyright 2020, Wiley-VCH.…”
mentioning
confidence: 99%
“…胶体 PQDs 作为一种零维的纳米半导体吸光材 料,具有一定的结构柔韧性,通过对钙钛矿晶体主 要组成部分进行离子取代或掺杂,会造成八面体的 扭转 [24] [26] 。但是 A 位掺杂过 多或过少会造成晶格严重畸变甚至发生相变,例如 Rb + 的尺寸较小(t ≈ 0.78),难以形成稳定的晶体结构; 较大尺寸的 A 位阳离子(如苯乙胺 [27] 、丁胺 [28] 等)会 破坏钙钛矿原始的三维结构,形成低维度的钙钛矿 材料。 [26,[29][30] 。 全无机 CsPbI3 相比有机-无机杂化钙钛矿则具有更高的热分解温 度, 表现出更好的热稳定性, 但是 Cs + 更小(t ≈ 0.81), 不利于维持晶格稳定 [31] ,同时带隙增大(1.73 eV), 不利于可见光的吸收利用。而 CsPbX3 量子点相比 于块体材料,由于尺寸诱导的晶格应变以及表面能 的贡献增强,使得其晶格稳定性大大提高,这也是 该类型量子点材料可以稳定存在的原因 [32][33] 。上述 分析表明纯 A 位阳离子制备得到的钙钛矿 SC 很难 在保证高效率的同时实现高稳定性。 因此,混合 A 位阳离子掺杂策略可以综合不同 阳离子的自身优势,改善单一阳离子的劣势,提升 太阳能电池性能。例如,MA 和 FA 有机阳离子混合 不但能够提高短路电流,还可以提升器件效率,改 图 2 (a) PQDs 的晶体结构示意图及组分调控;(b) PQDs 的 A 位阳离子交换示意图及相应的 PL 光谱 [26] ;(c)典型缺陷不容半 导体和缺陷可容钙钛矿的电子能带结构图 [36] ;(d)不同金属离子部分替换 B 位 Pb 2+ 以改善稳定性的原理示意图 [41] Fig. 2 (a) Crystal structure diagram and composition regulation of PQDs; (b) Illustration of the A site cation exchange process and the corresponding PL spectra of PQDs [26] ; (c) Illustration of the electronic band structure of typical defect intolerant semiconductors and defect tolerant perovskites [36] ; (d) Schematic of Pb 2+ at B site partially partial substituted by various metal ions to improve stability [41] 善稳定性 [34][35] 。此外,作为 Cs/FA 混合阳离子体系 [12][13]26] ,基于 Cs0.5FA0.5PbI3 量子点 SC 的 PCE 高达 16.6% [13] ,为目前基于 [36][37] [42] 。 Sn/Ge 合 金 化 的 CsSn0.6Ge0.4I3 能够钝化 Sn 空位,减少表面缺陷,改 善 SC 的效率和稳定性 [43] 。 除了等价离子,通过理论计算表明,采用异价 金属阳离子(Na + ,Ag + ,Bi 3+ ,Sb 3+ ,In 3+ )的双钙 钛矿结构也是实现无铅化电池的可行方法。其中 Cs2AgBiBr6 量子点已经成功应用于平面异质结结构 的光伏器件 [44] ,虽然器件的 PCE 较低(0.46%) ,但 是双钙钛矿量子点在光伏应用中的可行性得到了验 证。 [45] 。但是引入小尺寸卤 素离子会增加带隙,减少长波长处的光吸收,因此 需要仔细调节掺杂比例,在稳定性和光伏效率之间 寻求平衡。…”
Section: 钙钛矿量子点组分调控unclassified