Drought is a complex hazard, and it has an impact on agricultural, ecological, and socio-economic systems. The vegetation condition index (VCI), which is derived from remote-sensing data, has been widely used for drought monitoring. However, VCI based on the normalized difference vegetation index (NDVI) does not perform well in certain circumstances. In this study, we examined the utility of the vegetation index based on the universal pattern decomposition method (VIUPD) based VCI for drought monitoring in various climate divisions across the continental United States (CONUS). We compared the VIUPD-derived VCI with the NDVI-derived VCI in various climate divisions and during different sub-periods of the growing season. It was also compared with other remote-sensing-based drought indices, such as the temperature condition index (TCI), precipitation condition index (PCI) and the soil moisture condition index (SMCI). The VIUPD-derived VCI had stronger correlations with long-term in situ drought indices, such as the Palmer Drought Severity Index (PDSI) and the standardized precipitation index (SPI-3, SPI-6, SPI-9, and SPI-12) than did the NDVI-derived VCI, and other indices, such as TCI, PCI and SMCI. The VIUPD has considerable potential for drought monitoring. As VIUPD can make use of the information from all the observation bands, the VIUPD-derived VCI can be regarded as an enhanced VCI.