An integrated in situ Indian Ocean observing system (IndOOS) is simulated using a high-resolution ocean general circulation model (OGCM) with daily mean forcing, including an estimate of subdaily oceanic variability derived from observations. The inclusion of subdaily noise is fundamental to the results; in the mixed layer it is parameterized as Gaussian noise with an rms of 0.1°C; below the mixed layer a Gaussian interface displacement with an rms of 7 m is used. The focus of this assessment is on the ability of an IndOOS-comprising a 3°ϫ 3°Argo profiling float array, a series of frequently repeated XBT lines, and an array of moored buoys-to observe the interannual and subseasonal variability of subsurface Indian Ocean temperature. The simulated IndOOS captures much of the OGCM interannual subsurface temperature variability.A fully deployed Argo array with 10-day sampling interval is able to capture a significant part of the Indian Ocean interannual temperature variability; a 5-day sampling interval degrades its ability to capture variability. The proposed moored buoy array and frequently repeated XBT lines provide complementary information in key regions, particularly the Java/Sumatra and Somali upwelling and equatorial regions. Since the subdaily noise is of the same order as the subseasonal signal and since much of the variability is submonthly, a 5-day sampling interval does not drastically enhance the ability of Argo to capture the OGCM subseasonal variability. However, as sampling intervals are decreased, there is enhanced divergence of the Argo floats, diminished ability to quality control data, and a decreased lifetime of the floats; these factors argue against attempting to resolve subseasonal variability with Argo by shortening the sampling interval. A moored array is essential to capturing the subseasonal and near-equatorial variability in the model, and the proposed moored buoy locations span the region of strong subseasonal variability. On the whole, the proposed IndOOS significantly enhances the ability to capture both interannual and subseasonal variability in the Indian Ocean.