IntroductionBiometric systems for human recognition are an ongoing demand. Among all biometric technologies which are employed so far, face recognition is one of the most widely outspread biometrics. Its daily use by nearly everyone as the primary mean for recognizing other humans and its naturalness have turned face recognition into a well-accepted method. Furthermore, this image procurement is not considered as intrusive as the other mentioned alternatives. Nonetheless, in spite of the various facial recognition systems which already exist, many of them have been unsuccessful in matching up to expectations. 2D facial recognition systems are constrained by limitations such as physical appearance changes, aging factor, pose and changes in lighting intensity. Recently, to overcome these challenges 3D facial recognition systems have been issued as the newly emerged biometric technique, showing a high level of accuracy and reliability, being more robust to face variation due to the different factors. A face-based biometric system consists of acquisition devices, preprocessing, feature extraction, data storage and a comparator. An acquisition device may be a 2D-, 3D-or an infra-red-camera that can record the facial information. The preprocessing can detect facial landmarks, align facial data and crop facial area. It can filter irrelevant information such as hair, background and reduce facial variation due to pose change. In 2D images, landmarks such as eye, eyebrow, mouths etc, can be reliably detected, in contrast, nose is the most important landmark in 3D face recognition. The 3D information (depth and texture maps) corresponding to the surface of the face may be acquired using different alternatives: A multi camera system (stereoscopy), range cameras or 3D laser and scanner devices. Different approaches have been presented from the 3D perspective. The first approach would correspond to all 3D approaches that require the same data format in the training and in the testing stage. The second philosophy would enclose all approaches that take advantage of the 3D data during the training stage but then use 2D data in the recognition stage. Approaches of the first category report better results t h a n o f t h e s e c o n d g r o u p ; h o w e v e r , t h e m a i n d r a w b a c k o f t h i s c a t e g o r y i s t h a t t h e acquisition conditions and elements of the test scenario should be well synchronized and controlled in order to acquire accurate 3D data. Thus, they are not suitable for surveillance applications or control access points where only one "normal" 2D texture image (from any view) acquired from a single camera is available. The second category encloses model-based approaches. Nevertheless, model-based face recognition approaches present the main drawback of a high computational burden required to fit the images to the 3D models.
www.intechopen.com
New Approaches to Characterization and Recognition of Faces
48In this chapter, we study 3D face recognition where we provide a description of the most recent ...