In recent years, representations from brain activity patterns and pre-trained language models have been linked to each other based on neural fits to validate hypotheses about language processing. Nonetheless, open questions remain about what intrinsic properties of language processing these neural fits reflect and whether they differ across neural fit approaches, brain networks, and models. In this study, we use parallel sentence and functional magnetic resonance imaging data to perform a comprehensive analysis of four paradigms (masked language modeling, pragmatic coherence, semantic comparison, and contrastive learning) representing linguistic hypotheses about sentence processing. We include three sentence embedding models for each paradigm, resulting in a total of 12 models, and examine differences in their neural fit to four different brain networks using regression-based neural encoding and Representational Similarity Analysis (RSA). Among the different models tested, GPT-2, SkipThoughts, and S-RoBERTa yielded the strongest correlations with language network patterns, whereas contrastive learning-based models resulted in overall low neural fits. Our findings demonstrate that neural fits vary across brain networks and models representing the same linguistic hypothesis (e.g., GPT-2 and GPT-3). More importantly, we show the need for both neural encoding and RSA as complementary methods to provide full understanding of neural fits. All code used in the analysis is publicly available: https://github.com/lcn-kul/sentencefmricomparison.