The diffusion at atomic scale is of considerable interest as one of the critical processes in growth and evaporation as well as a probe of the forces at an atomically flat reconstructed surface. This atomic-scale migration is critical to investigate in strontium titanate (SrTiO3) as it possesses the same status in oxide electronics as does silicon in ordinary electronics based on elemental semiconductors. Here we show that (001) terminated SrTiO3 reconstructed surface is atomically unstable enough to allow atom-vacancy hopping at room temperature. In this work, SrTiO3 (001) single crystal (7 × 2 × 0.5 mm) was sputtered (0.5 keV, 2.5 µA, 10 min) and annealed multiple times in ultra-high vacuum (UHV) and imaged using scanning tunneling microscope (STM). A relatively unstable surface was observed at low-temperature annealing and tip–surface interactions caused dislocation of mass at the surface. Both square and zig-zag nanolines were observed with atomic resolution where an atom-vacancy hopping was observed in a square diline while imaging at room temperature. The hopping was ceased when sample was annealed at higher temperature and a more compact network of nanolines was achieved.
Graphic abstract