Extracellular f luid macroviscosity (EFM), modified by macromolecular cosolvents as occurs in body f luids, has been shown to affect cell membrane protein activities but not isolated proteins. In search for the mechanism of this phenomenon, we examined the effect of EFM on mechanical f luctuations of the cell membrane of human erythrocytes. The macroviscosity of the external medium was varied by adding to it various macromolecules [dextrans (70, 500, and 2,000 kDa), polyethylene glycol (20 kDa), and carboxymethyl-cellulose (100 kDa)], which differ in size, chemical nature, and in their capacity to increase f luid viscosity. The parameters of cell membrane f luctuations (maximal amplitude and half-width of amplitude distribution) were diminished with the elevation of solvent macroviscosity, regardless of the cosolvent used to increase EFM. Because thermally driven membrane f luctuations cannot be damped by elevation of EFM, the existence of a metabolic driving force is suggested. This is supported by the finding that in ATPdepleted red blood cells elevation of EMF did not affect cell membrane f luctuations. This study demonstrates that (i) EFM is a regulator of membrane dynamics, providing a possible mechanism by which EFM affects cell membrane activities; and (ii) cell membrane f luctuations are driven by a metabolic driving force in addition to the thermal one.The viscosity of body fluids is determined by the level of macromolecules consisting of proteins, lipoproteins, and polysacharides (1). Accordingly, elevated plasma viscosity has been observed in various diseases associated with increased levels of proteins and lipoproteins, such as diabetes, hyperlipidemia, macroglobulinemia, multiple myeloma, nephrosis, and others (1-5). Various studies have shown that solvent viscosity affects protein dynamics and reactions (6-10). However, in these studies the solvent viscosity was modified by the addition of high concentrations of small cosolvents such as glycerol and sucrose, producing relatively high viscosity levels. This is incompatible with physiological and pathological states, where fluid viscosity is altered by small concentrations of large macromolecules (1). Other studies, in which the viscosity was elevated by macromolecular cosolvents, have shown that extracellular fluid macroviscosity (EFM) is a regulator of cellular processes, such as secretion of renin (11) and lipoproteins (12), phospholipase A 2 activity at the cell membrane (13, 14), and ganglioside metabolism (15). In search of the mechanism of this phenomenon, the effect of macroviscosity, as modified by macromolecules, on isolated proteins in aqueous solutions was examined (16,17). It was found that the effect of solvent viscosity decreases with increasing molecular weight of the cosolvent and is practically diminished when the cosolvent molecular weight exceeds that of the protein. Because the activity of cell membrane enzymes is known to be sensitive to the physical properties of the membrane (18), we considered the possibility that the...