2022
DOI: 10.22541/au.165812631.19042374/v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Asymptotic stability of rarefaction wave for a blood flow model

Abstract: This paper is concerned with nonlinear stability of rarefaction wave to the Cauchy problem for a blood flow model, which describes the motion of blood through axi-symmetric compliant vessels. Inspired by the stability analysis of classical $p$-system, we show the solution of this typical model tends time-asymptotically toward the rarefaction wave under some suitably small conditions and there are more difficulties in the proof due to the appearance of strong nonlinear terms including second-order derivative of… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 25 publications
(34 reference statements)
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?