A two-dimensional numerical model of variable-density groundwater flow and dispersive solute transport was used to predict the extent, rate, and lag time of saltwater intrusion in response to various sea-level rise scenarios. Three simulations were performed with varying rates of sea-level rise. For the first simulation, sea-level rise was specified at a rate of 0.9 mm/yr, which is the slowest rate of sea-level rise estimated by the Intergovernmental Panel on Climate Change (IPCC). After 100 years, the 250 mg/L chloride isochlor moved inland by about 40 m, and required an additional 8 years for the system to reach equilibrium. For the next simulation, sealevel rise was specified at 4.8 mm/yr, which is the central value of the IPCC estimate. For this moderate rate of sea-level rise, the 250 mg/L isochlor moved inland by about 740 m after 100 years, and required an additional 10 years for the system to reach equilibrium. For the fastest rate of sea-level rise estimated by IPCC (8.8 mm/yr), the 250 mg/L isochlor moved inland by about 1800 m after 100 years, and required more than 50 years to reach equilibrium.