Knowledge of all residue-residue contacts within a protein allows determination of the protein fold. Accurate prediction of even a subset of long-range contacts (contacts between amino acids far apart in sequence) can be instrumental for determining tertiary structure. Here we present BCL::Contact, a novel contact prediction method that utilizes artificial neural networks (ANNs) and specializes in the prediction of medium to long-range contacts. BCL::Contact comes in two modes: sequence-based and structure-based. The sequence-based mode uses only sequence information and has individual ANNs specialized for helix-helix, helix-strand, strand-helix, strand-strand, and sheet-sheet contacts. The structure-based mode combines results from 32-fold recognition methods with sequence information to a consensus prediction. The two methods were presented in the 6 th and 7 th Critical Assessment of Techniques for Protein Structure Prediction (CASP) experiments. The present work focuses on elucidating the impact of fold recognition results onto contact prediction via a direct comparison of both methods on a joined benchmark set of proteins. The sequence-based mode predicted contacts with 42% accuracy (7% false positive rate), while the structure-based mode achieved 45% accuracy (2% false positive rate). Predictions by both modes of BCL::Contact were supplied as input to the protein tertiary structure prediction program Rosetta for a benchmark of 17 proteins with no close sequence homologs in the protein data bank (PDB). Rosetta created higher accuracy models, signified by an improvement of 1.3 Å on average root mean square deviation (RMSD), when driven by the predicted contacts. Further, filtering Rosetta models by agreement with the predicted contacts enriches for native-like fold topologies.