2021
DOI: 10.3389/fbioe.2021.698349
|View full text |Cite
|
Sign up to set email alerts
|

Assessment of In Vitro and In Vivo Bioremediation Potentials of Orally Supplemented Free and Microencapsulated Lactobacillus acidophilus KLDS Strains to Mitigate the Chronic Lead Toxicity

Abstract: Lead (Pb) is a pestilent and relatively nonbiodegradable heavy metal, which causes severe health effects by inducing inflammation and oxidative stress in animal and human tissues. This is because of its significant tolerance and capability to bind Pb (430 mg/L) and thermodynamic fitness to sequester Pb in the Freundlich model (R2 = 0.98421) in vitro. Lactobacillus acidophilus KLDS1.1003 was selected for further in vivo study both in free and maize resistant starch (MRS)–based microencapsulated forms to assess … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(1 citation statement)
references
References 87 publications
(127 reference statements)
0
1
0
Order By: Relevance
“…In addition, soil microbial biomass and activity can sensitively assess soil quality. Pb can bind with NH2 and SH enzyme groups, thereby causing enzymes to lose their activity and preventing them from harming soil microorganisms ( 39 , 40 ). Pb might underlie the mechanism for decreasing CAT and NR levels in Cr-polluted soils.…”
Section: Discussionmentioning
confidence: 99%
“…In addition, soil microbial biomass and activity can sensitively assess soil quality. Pb can bind with NH2 and SH enzyme groups, thereby causing enzymes to lose their activity and preventing them from harming soil microorganisms ( 39 , 40 ). Pb might underlie the mechanism for decreasing CAT and NR levels in Cr-polluted soils.…”
Section: Discussionmentioning
confidence: 99%