2020
DOI: 10.1002/lom3.10379
|View full text |Cite
|
Sign up to set email alerts
|

Assessment of holographic microscopy for quantifying marine particle size and concentration

Abstract: Holographic microscopy has emerged as a tool for in situ imaging of microscopic organisms and other particles in the marine environment: appealing because of the relatively larger sampling volume and simpler optical configuration compared to other imaging systems. However, its quantitative capabilities have so far remained uncertain, in part because hologram reconstruction and image recognition have required manual operation. Here, we assess the quantitative skill of our automated hologram processing pipeline … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
15
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 23 publications
(15 citation statements)
references
References 49 publications
(56 reference statements)
0
15
0
Order By: Relevance
“…Holography has certain technical challenges for capturing high-quality plankton features, owing first to the need for numerical reconstruction of a sample volume, followed by object detection and autofocusing. In assessing the HoloSea, Walcutt et al [ 41 ] observed two notable biases underlying particle size and density estimates, including the attenuated light intensity from the point source, both radially and axially across the sample volume and secondly, that foreground objects inevitably shade the volume background. Although this study is concerned with classification, both biases are present in this study.…”
Section: Discussionmentioning
confidence: 99%
See 3 more Smart Citations
“…Holography has certain technical challenges for capturing high-quality plankton features, owing first to the need for numerical reconstruction of a sample volume, followed by object detection and autofocusing. In assessing the HoloSea, Walcutt et al [ 41 ] observed two notable biases underlying particle size and density estimates, including the attenuated light intensity from the point source, both radially and axially across the sample volume and secondly, that foreground objects inevitably shade the volume background. Although this study is concerned with classification, both biases are present in this study.…”
Section: Discussionmentioning
confidence: 99%
“…Although this study is concerned with classification, both biases are present in this study. Several modifications offered by Walcutt et al [ 41 ] apply here: Adjusting the point source-to-camera distance to expand sample space illumination and create a more uniform light intensity, scaling object detection probability based on pixel intensity, and local adaptive thresholding to improve ROIs detection consistency at the dimmed hologram edges—as opposed to the fixed, global thresholding algorithm used here. Because objects are less likely to be detected at the hologram edges, only a fraction of the particle field is consistently imaged.…”
Section: Discussionmentioning
confidence: 99%
See 2 more Smart Citations
“…They suggest that in particle fields dominated by non-spherical particles, the LISST-100X might report a single large particle as several individual particles, thus skewing the PSD. While the above studies use holography as a standard to compare other instrumentation, a study by Walcutt et al (2020) is also pertinent to this discussion. Here, a 4Deep holographic microscope was simultaneously used along with a FlowCam, Imaging Flow Cytobot (IFCB), and standard microscope, to compare PSDs.…”
Section: Particle Size Distributionsmentioning
confidence: 99%