The highly acclaimed prospect of renewable lignocellulosic biocommodities as obvious replacement of their fossilbased counterparts is burgeoning within the last few years. However, the use of the abundant lignocellulosic biomass provided by nature to produce value-added products, especially bioethanol, still faces significant challenges. One of the crucial challenging factors is in association with the expression levels, stability, and cost-effectiveness of the cellulose-degrading enzymes (cellulases). Interestingly, several recommendable endeavors in the bid to curb these challenges are in pursuance. However, the existing body of literature has not well provided the updated roadmap of the advancement and key players spearheading the current success. Moreover, the description of enzyme systems and emerging paradigms with high prospects, for example, the cell-surface display system has been ill-captured in the literature. This review focuses on the lignocellulosic biocommodity pathway, with emphasis on cellulase and hemicellulase systems. The paradigm shift towards cell-surface display system and its emerging recommendable developments have also been discussed. The attempts in supplementing cellulase with other enzymes, accessory proteins, and chemical additives have also been discussed. Moreover, some of the prominent and influential discoveries in the cellulase fraternity have been discussed.