Segmentation is one of the critical steps in historical document image analysis systems that determines the quality of the search, understanding, recognition and interpretation processes. It allows isolating the objects to be considered and separating the regions of interest (paragraphs, lines, words and characters) from other entities (figures, graphs, tables, etc.). This stage follows the thresholding, which aims to improve the quality of the document and to extract its background from its foreground, also for detecting and correcting the skew that leads to redress the document. Here, a hybrid method is proposed in order to locate words and characters in both handwritten and printed documents. Numerical results prove the robustness and the high precision of our approach applied on old degraded document images over four common datasets, in which the pair (Recall, Precision) reaches approximately 97.7% and 97.9%.