In this paper, motivated by Reich contraction and tool of measure of noncompactness, some generalizations of Reich, Kannan, Darbo, Sadovskii, and Krasnoselskii type fixed point results are presented by considering a pair of maps A, B on a nonempty closed subset M of a Banach space X into X. The existence of a solution to the equation $Ax+Bx=x$
A
x
+
B
x
=
x
, where A is k-set contractive and B is a generalized Reich contraction, is established. As applications, it is established that the main result of this paper can be applied to learn conditions under which a solution of a nonlinear integral equation exists. Further we explain this phenomenon with the help of a practical example to approximate such solutions by using fixed point techniques. The graphs of exact and approximate solutions are also given to attract readers for further research activities.