As one of the core components that improve transportation, generation, delivery, and electricity consumption in terms of protection and reliability, smart grid can provide full visibility and universal control of power assets and services, provide resilience to system anomalies and enable new ways to supply and trade resources in a coordinated manner.
In current power grids, a large number of power supply and demand components, sensing and control devices generate lots of requirements, e.g., data perception, information transmission, business processing and real-time control, while existing centralized cloud computing paradigm is hard to address issues and challenges such as rapid response and local autonomy.
Specifically, the trend of micro grid computing is one of the key challenges in smart grid, because a lot of in the power grid, diverse, adjustable supply components and more complex, optimization of difficulty is also relatively large, whereas traditional, manual, centralized methods are often dependent on expert experience, and requires a lot of manpower. Furthermore, the application of edge intelligence to power flow adjustment in smart grid is still in its infancy.
In order to meet this challenge, we propose a power control framework combining edge computing and machine learning, which makes full use of edge nodes to sense network state and power control, so as to achieve the goal of fast response and local autonomy. Furthermore, we design and implement parameters such as state, action and reward by using deep reinforcement learning to make intelligent control decisions, aiming at the problem that flow calculation often does not converge.
The simulation results demonstrate the effectiveness of our method with successful dynamic power flow calculating and stable operation under various power conditions.