The paper presents a review of End-of-Life scenarios (EoL) (disposal, incineration, chemical, thermal and mechanical recycling) compared to the production stage of Fibre-Reinforced Polymers (FRPs) of composites regarding global warming potential. Innovative FRP manufacturing technologies (vacuum infusion, ultraviolet curved pultrusion, hot stamping, three-dimensional printing and automatic tape placement) commonly used in the shipbuilding industry were environmentally assessed. The materials, energy flows and waste discharged to the environment over the whole life cycle were collected, identified and quantified based on Life Cycle Assessment (LCA) analysis in the frame of the Fibre4Yards project. The results of LCA calculations show that waste management (the EoL scenario) contributes 5 to 39% of the total carbon footprint for FRP technologies. The highest contribution of the EoL scenario was found for technologies where polypropylene was applied, i.e., 33 and 38% of the total CO2 emissions. Our analysis of the literature and information from industrial partners confirm that the standard and most common waste scenario for FRP materials and compounds is still incineration and landfilling.