2014
DOI: 10.7202/1035632ar
|View full text |Cite
|
Sign up to set email alerts
|

Application d’une approche inspirée des colonies de fourmis pour la recommandation des chemins d’apprentissage dans un cours en ligne : modèle et expérience

Abstract: Dans cet article, nous présentons la mise en oeuvre, l’expérimentation et l’évaluation d’une approche pour la recommandation des chemins d’apprentissage dans un cours en ligne. Le processus de recommandation est inspiré de l’intelligence en essaim et plus particulièrement de l’optimisation par colonies de fourmis (OCF) (ant colony optimization [ACO]). Dans ce contexte, nous avons considéré une différenciation des chemins d’apprentissage en fonction de l’activité explorée pour l’apprentissage d’un cours.Dans l’… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2016
2016
2018
2018

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 14 publications
0
2
0
Order By: Relevance
“…• In the work of Talhi et al [10] is presented a generic guardian canvas, which integrates a technique of intelligent tutors and those of the hypermedia systems in the design of guidance, assistance, and adaptation of courses to different learners. • The work of Dahbi et al [11] proposes an approach of the recommendation of learning path in an online course through the adjustment of ant colony optimization. This approach is based both on the recommendation of relative paths by the teacher and the results stored progressively by learners on borrowed paths.…”
Section: B Guidance and Optimization In E-learningmentioning
confidence: 99%
See 1 more Smart Citation
“…• In the work of Talhi et al [10] is presented a generic guardian canvas, which integrates a technique of intelligent tutors and those of the hypermedia systems in the design of guidance, assistance, and adaptation of courses to different learners. • The work of Dahbi et al [11] proposes an approach of the recommendation of learning path in an online course through the adjustment of ant colony optimization. This approach is based both on the recommendation of relative paths by the teacher and the results stored progressively by learners on borrowed paths.…”
Section: B Guidance and Optimization In E-learningmentioning
confidence: 99%
“…and = . (11) where NB_ is the number of the visitor of and is the number of visitor of such as ϵto the path learner.…”
Section: = (10)mentioning
confidence: 99%