BackgroundSurface functionalization of gold nanoparticles (AuNPs) has emerged as a promising field of research with enormous biomedical applications. The folate (FA)-attached polymer-gold nanoconjugates play vital role in targeting the cancer cells.MethodsAuNPs were synthesized by using di- or tri-carboxylate-polyethylene glycol (PEG) polymers, including citrate-PEG (CPEG), malate-PEG (MAP), and tartrate-PEG (TAP), as a reducing and stabilizing agent. After synthesis of polymer-AuNPs, the freely available hydroxyl and carboxylate groups of CPEG, MAP, and TAP were used to attach a cancer cell-targeting agent, FA, via a 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxy succinimide coupling reaction to obtain FA-CPEG-AuNP, FA-MAP-AuNP, and FA-TAP-AuNP nanocon-jugates, respectively. The 5-fluorouracil (5FU) was attached to π back-bonded carbonyl oxygens of the nanoconjugates, and the in vitro drug release profile was studied by high pressure liquid chromatography. Biocompatibility profiles of the FA-CPEG-AuNP, FA-MAP-AuNP, and FA-TAP-AuNP nanoconjugates were investigated using adult human dermal fibroblasts. Anti-breast cancer activity of 5FU-loaded nanoconjugates was investigated using MCF-7 breast cancer cells.ResultsX-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy analyses confirmed that AuNPs attached to CPEG, MAP, or TAP via the formation of π back bonding between AuNPs and the ester carbonyl group. The π back-bonded nanoconjugates exhibited sustained release of 5FU up to 27 days. FA-MAP-AuNPs exhibited an IC50 at 5 µg/mL, while FA-CPEG-AuNPs and FA-TAP-AuNPs showed the IC50 at 100 µg/mL toward MCF-7 cancer cells.ConclusionThe developed polymer π back-bonded multifunctional gold nanoconjugates could be used as a potential drug delivery system for targeting MCF-7 cancer cells.