2019
DOI: 10.1111/jcmm.14233
|View full text |Cite
|
Sign up to set email alerts
|

Angiotensin II‐induced redox‐sensitive SGLT1 and 2 expression promotes high glucose‐induced endothelial cell senescence

Abstract: High glucose (HG)‐induced endothelial senescence and dysfunction contribute to the increased cardiovascular risk in diabetes. Empagliflozin, a selective sodium glucose co‐transporter2 (SGLT2) inhibitor, reduced the risk of cardiovascular mortality in type 2 diabetic patients but the protective mechanism remains unclear. This study examines the role of SGLT2 in HG‐induced endothelial senescence and dysfunction. Porcine coronary artery cultured endothelial cells (ECs) or segments were exposed to HG (25 mmol/L) b… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

1
61
1

Year Published

2020
2020
2023
2023

Publication Types

Select...
6
1

Relationship

1
6

Authors

Journals

citations
Cited by 87 publications
(67 citation statements)
references
References 48 publications
1
61
1
Order By: Relevance
“…The present findings indicate that the empagliflozin treatment was able to normalize the expression level of senescence markers, eNOS, tissue factor, VCAM-1 and SGLT1 and 2 in the inner aortic arch curvature to levels similar to those in the outer aortic arch curvature, which is protected by the exposure to high levels of shear stress. Thus, these observations suggest that empagliflozin might possibly contribute to protect arterial sites of atherogenesis by blunting the SGLT2-mediated pro-senescent and pro-atherothrombotic responses [30]. The fact that no such differences in the expression level of pro-atherothrombotic markers are observed in the inner and outer curvature of the obese ZSF1 rat suggests that the responsiveness of the arterial wall to local blood flow behavior appears to be altered possibly due to the chronic exposure of metabolic stress.…”
Section: Discussionmentioning
confidence: 84%
See 3 more Smart Citations
“…The present findings indicate that the empagliflozin treatment was able to normalize the expression level of senescence markers, eNOS, tissue factor, VCAM-1 and SGLT1 and 2 in the inner aortic arch curvature to levels similar to those in the outer aortic arch curvature, which is protected by the exposure to high levels of shear stress. Thus, these observations suggest that empagliflozin might possibly contribute to protect arterial sites of atherogenesis by blunting the SGLT2-mediated pro-senescent and pro-atherothrombotic responses [30]. The fact that no such differences in the expression level of pro-atherothrombotic markers are observed in the inner and outer curvature of the obese ZSF1 rat suggests that the responsiveness of the arterial wall to local blood flow behavior appears to be altered possibly due to the chronic exposure of metabolic stress.…”
Section: Discussionmentioning
confidence: 84%
“…Several potential mechanism, besides glycemic control, have been suggested such as the involvement of visceral adiposity, body weight, hyperinsulinemia, blood pressure, arterial stiffness, lipid profile, and albuminuria [34]. In addition, SGLT1 and 2 expression has been observed in cultured and native ECs under pathological conditions such as hyperglycemic state and oxidative stress, promoting endothelial senescence and dysfunction subsequent to excessive glucose entry [30]. Since all of these effects were inhibited by empagliflozin, SGLT2 inhibitors may possibly also contribute to protect the cardiovascular system by targeting the pivotal endothelial function [30].…”
Section: Discussionmentioning
confidence: 99%
See 2 more Smart Citations
“…This result indicates that SGLT2 inhibitors might be the new hope of the patients with DN after the use of renin-angiotensin system blockers over the past 18 years. The underlying mechanism may be related to its antisenescence of renal cells resulting from the fact that SGLT2 increased the expression of senescent markers in proximal tubules [76] and endothelial cells [192] in DM, indicating that SGLT2 inhibitors might retard renal accelerated aging in DM to preserve kidney function. Other antidiabetic agents reported to protect against accelerated aging are dipeptidyl peptidase 4 (DPP4) inhibition and GLP-1 receptor agonists, which act on the modulation of incretin that protect against age-related diseases including DN [193].…”
Section: Potential Therapeutic Strategy Targeting Accelerated Kidney mentioning
confidence: 99%