1969
DOI: 10.1090/s0002-9947-1969-0248285-6
|View full text |Cite
|
Sign up to set email alerts
|

Analytic and entire vectors for representations of Lie groups

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

2
39
0
4

Year Published

1980
1980
2022
2022

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 132 publications
(45 citation statements)
references
References 22 publications
2
39
0
4
Order By: Relevance
“…For a number γ ∈ [0, ∞), we put where is a Banach space with respect to the norm \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathbb {N}_{0} = \mathbb {N}\bigcup \lbrace 0\rbrace$\end{document}. The linear space \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathfrak {G}_{\lbrace \gamma \rbrace }(A) \ (\mathfrak {G}_{(\gamma )}(A))$\end{document} is endowed with the inductive (projective) limit topology of the Banach spaces \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathfrak {G}_{\gamma }^{\alpha }(A)$\end{document}: Specifically, the spaces \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathfrak {G}_{\lbrace 1\rbrace }(A), \ \mathfrak {G}_{(1)}(A)$\end{document}, and \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathfrak {G}_{\lbrace 0\rbrace }(A)$\end{document} are not other than the spaces of analytic 18, entire 6 and entire of exponential type 22 vectors of the operator A , respectively (see also 3, 23).…”
Section: Some Subspaces Of Infinitely Differentiable Vectors Of a Clomentioning
confidence: 99%
“…For a number γ ∈ [0, ∞), we put where is a Banach space with respect to the norm \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathbb {N}_{0} = \mathbb {N}\bigcup \lbrace 0\rbrace$\end{document}. The linear space \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathfrak {G}_{\lbrace \gamma \rbrace }(A) \ (\mathfrak {G}_{(\gamma )}(A))$\end{document} is endowed with the inductive (projective) limit topology of the Banach spaces \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathfrak {G}_{\gamma }^{\alpha }(A)$\end{document}: Specifically, the spaces \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathfrak {G}_{\lbrace 1\rbrace }(A), \ \mathfrak {G}_{(1)}(A)$\end{document}, and \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$\mathfrak {G}_{\lbrace 0\rbrace }(A)$\end{document} are not other than the spaces of analytic 18, entire 6 and entire of exponential type 22 vectors of the operator A , respectively (see also 3, 23).…”
Section: Some Subspaces Of Infinitely Differentiable Vectors Of a Clomentioning
confidence: 99%
“…Pour pouvoir appliquer le théorème (1.2), il nous faut démontrer pour les crochets d'ordre j (j^r) une égalité du type (1. On renvoie à (7] pour les définitions. On peut démontrer exactement comme le théorème 1.3 et compte tenu d'un théorème de R. Goodman [7] le théorème suivant : Il est montré dans [2] que le théorème (1.2) est encore vrai dans les classes de Gevrey G 5 .…”
Section: Démonstration Du Théorème 13unclassified
“…On renvoie à (7] pour les définitions. On peut démontrer exactement comme le théorème 1.3 et compte tenu d'un théorème de R. Goodman [7] le théorème suivant : Il est montré dans [2] que le théorème (1.2) est encore vrai dans les classes de Gevrey G 5 . Le théorème suivant se démontre comme le théorème (1.3) : THÉORÈME 2.9.…”
Section: Démonstration Du Théorème 13unclassified
See 1 more Smart Citation
“…(B), C (n!) (B), and C {1} (B) of analytic vectors[7], entire vectors[8], and entire vectors of exponential type[9] of the operator B.In particular, if H = L 2 (a, b), −∞ < a < b < ∞, B = d/dx, and D(B) is the Sobolev space W 1 2 (a, b), then C ∞ (B)coincides with the set of infinitely differentiable functions on [a, b], C {n!} (B) and C (n!)…”
mentioning
confidence: 99%