2013
DOI: 10.1016/j.enconman.2013.08.014
|View full text |Cite
|
Sign up to set email alerts
|

Analysis on optimal heat exchanger size of thermoelectric cooler for electronic cooling applications

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
23
0
4

Year Published

2016
2016
2023
2023

Publication Types

Select...
8
2

Relationship

0
10

Authors

Journals

citations
Cited by 116 publications
(27 citation statements)
references
References 18 publications
0
23
0
4
Order By: Relevance
“…First, TE module design and optimization, such as number of thermocouples [63][64][65][66], thermoelement length [67][68][69][70] and thermoelement length to cross-sectional area ratio [71][72][73]. Second, cooling system thermal design and optimization [74], which includes investigation of heat sinks' geometry [75][76][77], identification of the heat transfer area and heat transfer coefficients of both hot and cold side heat sinks [78][79][80], more effective heat sinks (i.e. heat sink integrated with thermosyphon and phase change material) [16,81,82], thermal and electrical contact resistances and interface layer analysis [83][84][85].…”
Section: Modeling Approaches For Thermoelectric Coolingmentioning
confidence: 99%
“…First, TE module design and optimization, such as number of thermocouples [63][64][65][66], thermoelement length [67][68][69][70] and thermoelement length to cross-sectional area ratio [71][72][73]. Second, cooling system thermal design and optimization [74], which includes investigation of heat sinks' geometry [75][76][77], identification of the heat transfer area and heat transfer coefficients of both hot and cold side heat sinks [78][79][80], more effective heat sinks (i.e. heat sink integrated with thermosyphon and phase change material) [16,81,82], thermal and electrical contact resistances and interface layer analysis [83][84][85].…”
Section: Modeling Approaches For Thermoelectric Coolingmentioning
confidence: 99%
“…ペルチェ素子は電圧を加えると, 一方の面から他方の面へ熱移動が生じる薄型板状の熱電変換デバイスである. 対象物への局所的な温度制御が可能であり,コンプレッサなどの可動部が存在しないため,モジュールがコンパ クトという特徴から,生体の治療用冷却装置としての応用が期待されている , (Zhu et al, 2013).しかし,これらの方法は,ある特定の条件下で使用した場合におけるペルチェ素子の放 熱量の推定や,エネルギー効率を表す成績係数(COP)を考慮した最適な駆動電流値・電圧値の算出には効果的で あるが,ペルチェ素子両面温度の過渡・定常応答を精度良く模擬することができない.そこで,ペルチェ素子販 売メーカーにより提供される公称的な情報より,ペルチェ素子内部の特性パラメータを近似的に推定する方法 , や,温度依存性を考慮した特性パラメータの設定方法 などが提案されている.前者は,任意の作動条件下で,ペルチェ素子自体の過渡・定常応答をある程度推定 することが出来るが,それを冷却装置として使用し,何か対象物を冷やすといった場合の応答の検討は行われて いない.後者は,従来の方法と比べ,シミュレーション精度は高いが,かなり複雑な処理が必要となり,汎用性 を考慮すると現実的ではない. 我々はこれまで,脳疾患の一つであるてんかんの大脳冷却治療を実現するための小型冷却装置の開発を行って きた , , 1 (a) Device A which is the same size and specification as device B. (b) Device C which uses a larger Peltier element than Device A.…”
Section: 緒 言unclassified
“…Yang and Wang [8] simulated a 3D transient cooling portable electronic device using phase change material. Zhu et al [9] optimized the heat exchanger size of a thermoelectric cooler used for electronic cooling applications. Gong et al [10] presented numerically on layout of micro-channel heat sink useful for thermal management of electronic devices.…”
Section: Literature Reviewmentioning
confidence: 99%