Despite previous reports on the emergence of Malassezia pachydermatis strains with decreased susceptibility to azoles, there is limited information on the actual prevalence and genetic diversity of azole-resistant isolates of this yeast species. We assessed the prevalence of azole resistance in M. pachydermatis isolates from cases of dog otitis or skin disease attended in a veterinary teaching hospital during a 2-year period and analyzed the ERG11 (encoding a lanosterol 14-α demethylase, the primary target of azoles) and whole genome sequence diversity of a group of isolates that displayed reduced azole susceptibility. Susceptibility testing of 89 M. pachydermatis isolates from 54 clinical episodes (1-6 isolates/episode) revealed low minimum inhibitory concentrations (MICs) to most azoles and other antifungals, but 11 isolates from six different episodes (i.e., 12.4% of isolates and 11.1% of episodes) had decreased susceptibility to multiple azoles (fluconazole, itraconazole, ketoconazole, posaconazole, ravuconazole, and/or voriconazole). ERG11 sequencing of these 11 azole-resistant isolates identified eight DNA sequence profiles, most of which contained amino acid substitutions also found in some azole-susceptible isolates. Analysis of whole genome sequencing (WGS) results revealed that the azole-resistant isolates from a same episode of otitis, or even different episodes affecting a same animal, were more genetically related to each other than to isolates from other dogs. In conclusion, our results confirmed the remarkable ERG11 sequence variability in M. pachydermatis isolates of animal origin observed in previous studies and demonstrate the value of WGS for disentangling the epidemiology of this yeast species.