This paper presents a complete set of singularity-reduced boundary integral relations for isolated discontinuities embedded in three-dimensional infinite media. The development is carried out within a broad context that allows the treatment of a well-known class of smart media such as linear piezoelectric, linear piezomagnetic and linear piezoelectromagnetic materials. In addition, resulting boundary integral representations are applicable to general discontinuities of arbitrary geometry and possessing a general jump distribution. The latter aspect allows the treatment of two special kinds of discontinuities: dislocations and cracks. The most attractive feature of the current development is that all integral relations for field quantities such as state variables and their gradients, the body flux, and the generalized interaction energy produced by dislocations are expressed only in terms of line integrals over the dislocation loops and, for cracks, the key governing boundary integral equation is established in a symmetric weak form and contains only weakly singular kernels of O(1/r ). Results for the former case are fundamental and useful in the context of dislocation mechanics and modeling while the resulting weakly singular, weak form integral equation constitutes a basis for the development of a well-known numerical technique, called a symmetric Galerkin boundary element method (SGBEM), for analysis of cracked bodies. The weakly singular nature of such an integral equation allows low order interpolations to be used in the numerical approximation.The key ingredient for achieving such development of integral representations is the use of certain special decompositions in the derivative-transferring process via Stokes's theorem. Existence of such decompositions is ensured by a careful consideration of the singularity nature of the kernels, and a particular solution of the weakly singular functions involved is obtained by solving a system of partial differential equations via a method of Radon transforms. The final results, for general anisotropy, are given in a concise form in terms of an equatorial line integral that is suitable for numerical evaluation. As part of the verification, a numerical experiment is carried out for isolated crack problems via use of a weakly singular SGBEM and results exhibit only mild dependence on the mesh refinement and excellent agreement with existing analytical solutions.