Analysis and Comparison for Innovative Prediction Technique of COVID-19 using Decision Tree Algorithm over the Support Vector Machine Algorithm with Improved Accuracy
Abstract:Aim: The primary goal of this research is to increase the accuracy of COVID-19 prediction and its analysis. Materials and Method: This study relied on data collected from Kaggle’s website and samples are divided into two groups, GROUP 1 (N=20) for the Decision tree and GROUP 2 (N=20) for the Support Vector Machine (SVM) in accordance with the total sample size calculated using clinical.com by keeping alpha error-threshold value 0.05, 95% confidence interval, enrolment ratio as 0:1, and G power at 80%. It invol… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.