Type VI CRISPR-Cas systems are the only CRISPR variety that cleaves exclusively RNA1,2. In addition to the CRISPR RNA (crRNA)-guided, sequence-specific binding and cleavage of target RNAs, such as phage transcripts, the type VI effector, Cas13, causes collateral RNA cleavage, which induces bacterial cell dormancy, thus protecting the host population from phage spread3,4. We show here that the principal form of collateral RNA degradation elicited by Cas13a protein from Leptotrichia shahii upon target RNA recognition is the cleavage of anticodons of multiple tRNA species, primarily those with anticodons containing uridines. This tRNA cleavage is necessary and sufficient for bacterial dormancy induction by Cas13a. In addition, Cas13a activates the RNases of bacterial toxin-antitoxin modules, thus indirectly causing mRNA and rRNA cleavage, which could provide a back-up defense mechanism. The identified mode of action of Cas13a resembles that of bacterial anticodon nucleases involved in antiphage defense5, which is compatible with the hypothesis that type VI effectors evolved from an abortive infection module6,7 encompassing an anticodon nuclease.