The use of acoustic liners is a common means of noise reduction in jet engine exhausts. The quest for more effective sound absorption mechanisms in cylindrical ducts has led to the consideration of non-uniform liners, with impedance varying circumferentially, axially, or in both directions. The present paper is based on the theory of mode coupling in a non-uniformly lined cylindrical duct and considers the complementary problem of generation of sound or excitation of coupled modes by a source distribution. The sound field due to an arbitrary source distribution is obtained as a superposition of eigenfunctions corresponding to complex eigenvalues for the radial wavenumbers and natural frequencies taking into account that the radial, axial and azimuthal modes are coupled by the non-uniform wall impedance, and including resonant and non-resonant cases. The waveforms are illustrated for point monopole, dipole and quadrupole sources and a continuous monopole distribution. It is shown that a non-uniform liner provides a greater attenuation than a uniform liner with the same average impedance if it is 'well-matched' to the sound field, that is, if it has higher impedance at the peaks and lower at the nodes of the standing modes.