2015
DOI: 10.1016/j.jcp.2014.11.040
|View full text |Cite
|
Sign up to set email alerts
|

An iteration free backward semi-Lagrangian scheme for solving incompressible Navier–Stokes equations

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
13
0
1

Year Published

2019
2019
2023
2023

Publication Types

Select...
6

Relationship

2
4

Authors

Journals

citations
Cited by 20 publications
(14 citation statements)
references
References 38 publications
0
13
0
1
Order By: Relevance
“…ECM2 : πj()tn1xj2Δitalictu(),tnxj+2Δtu(),tnxju(),tnxjΔitalictu(),tnxj1+Δtux(),tnxjΔitalictu(),tnxj,πj()tn14(),xi+3πj()tn1+2Δitalictutrue(tn1πj()tn1true). …”
Section: New Characteristic‐tracking Methodsunclassified
See 3 more Smart Citations
“…ECM2 : πj()tn1xj2Δitalictu(),tnxj+2Δtu(),tnxju(),tnxjΔitalictu(),tnxj1+Δtux(),tnxjΔitalictu(),tnxj,πj()tn14(),xi+3πj()tn1+2Δitalictutrue(tn1πj()tn1true). …”
Section: New Characteristic‐tracking Methodsunclassified
“…In this subsection, we introduce a new qth‐order ( q = 2, 3) iteration‐free method based on the error‐correction scheme and implicit type multistep methods to find the approximate values πjn+1,nκ of the departure points π ( x j , t n +1 ; t n − κ ) ( κ = 0, …, 1 − q ) by solving (8). The q th‐order ( q = 2, 3) scheme for (8) begins with the construction of a modified Euler's polygon y j ( t ) as follows: yj()tnormalmin{},normalmax{},ytrue^j()tx0xJ,1.5em()Dirichlet boundary caseyj()t{ytrue^j()tytrue^j()t[],x0xJ,xJ()x0ytrue^j()tytrue^j()t<x0,2.5em()Periodic boundary casex0+()ytrue^j()txJ0.1emytrue^j()t>xJ, where truey^jtxj+ttn+1Ujn. Hereafter, we represent y j ( t ) as truey^jt for simplicity.…”
Section: New Characteristic‐tracking Methodsmentioning
confidence: 99%
See 2 more Smart Citations
“…Among them, the backward semi-Lagrangian method (BSL) describes the movement of particles in the Lagrangian description and resets the positions of the particles to the Eulerian grid point at each time level to reduce the accumulation and collision of particles. Moreover, it is well known that BSL exhibits good stability, allowing the use of larger temporal steps than the spatial grid size by solving equations implicitly along characteristic curves of particles in the reverse direction to time evolution [3,5,30,31]. Therefore, this paper proposes a robust high-order BSL algorithm for solving nonlinear advection-diffusion-dispersion equations.…”
Section: Introductionmentioning
confidence: 99%