The paper describes a convection parameterization employing a new formulation of the quasi-equilibrium closure hypothesis of Arakawa and Schubert. The scheme models a full spectrum of different cumulus clouds and its evolution within one time step of the host global climate model. Each cloud is simulated using a onedimensional Lagrangian entraining parcel model, which includes mixed phase microphysics and vertical velocity. Hence, the model delivers explicit information on distribution of vertical velocities, precipitation intensities, cloud heights, and cloud coverage. The parameterization is evaluated in the ECHAM singlecolumn model for midlatitude summer and tropical convection. Results show an improved temporal distribution, including the diurnal cycle, of convective heating and moistening in comparison to the Tiedtke-Nordeng scheme, which is the standard convection parameterization within ECHAM. The amount and temporal distribution of precipitation are clearly improved compared with the original parameterization. The convective cloud field model (CCFM) does not produce spurious convection events occurring with the standard parameterization.