We evaluated the potential utility of a group of indicators, each of which targets a particular tissue property, as indicators in the multiple-indicator dilution method to detect and to identify abnormalities in lung tissue properties resulting from lung injury models. We measured the pulmonary venous outflow concentration vs. time curves of [14C]diazepam, 3HOH, [14C]phenylethylamine, and a vascular reference indicator following their bolus injection into the pulmonary artery of isolated perfused rabbit lungs under different experimental conditions, resulting in changes in the lung tissue composition. The conditions included granulomatous inflammation, induced by the intravenous injection of complete Freund's adjuvant (CFA), and intratracheal fluid instillation, each of which resulted in similar increases in lung wet weight. Each of these conditions resulted in a unique pattern among the concentration vs. time outflow curves of the indicators studied. The patterns were quantified by using mathematical models describing the pulmonary disposition of each of the indicators studied. A unique model parameter vector was obtained for each condition, demonstrating the ability to detect and to identify changes in lung tissue properties by using the appropriate group of indicators in the multiple-indicator dilution method. One change that was particularly interesting was a CFA-induced change in the disposition of diazepam, suggestive of a substantial increase in peripheral-type benzodiazepine receptors in the inflamed lungs.