Salvianolic acid B (SalB) is a water-soluble phenolic compound, extractable from Salvia miltiorrhiza, and has previously been demonstrated to reverse tumor multidrug resistance (MDR) in colon cancer cells. Cancer stem cells (CSCs) are closely associated with drug resistance. Therefore, establishing a nude mouse model bearing human colon CSCs is important for the study of the mechanisms underlying colon cancer drug resistance as well as the reversal of drug resistance. The present study aimed to establish a nude mouse model bearing human colon CSCs and to investigate the effects of SalB on the drug resistance exhibited by the nude mouse model as well as determine its underlying mechanism. Cells from two colon cancer cell lines (LoVo and HCT-116) were cultured in serum-free medium to obtain CSCs-enriched spheroid cells. Following this, nude mice were transplanted with LoVo and HCT-116 colon CSCs to establish the CSC nude mouse model, which was subsequently demonstrated to exhibit MDR. The results of the present study revealed that following treatment with SalB, the chemotherapeutic drug resistance of xenografts was reversed to a certain extent. Western blot analysis was performed to investigate the expression levels of cluster of differentiation (CD)44, CD133, transcription factor sox-2 (SOX2) and ATP-binding cassette sub-family G member 2 (ABCG2) proteins, and the results demonstrated that treatment with SalB downregulated the expression of CD44, SOX2 and ABCG2 proteins in both LoVo and HCT-116 colon CSCs xenografts. In conclusion, the results of the present study revealed that a serum-free suspension method can be performed to successfully isolate colon CSCs. In addition, a nude mice bearing colon CSCs animal model was successfully established, and associated tumors were confirmed to exhibit MDR. Furthermore, SalB was demonstrated to successfully reverse MDR in nude mice bearing LoVo and HCT-116 colon CSCs, as well as suppress the expression of CD44, SOX2 and ABCG2 proteins.