We present the design and performance of a novel scanning tunnelling microscope (STM) operating in a cryogen‐free superconducting magnet. Our home‐built STM head is compact (51.5 mm long and 20 mm in diameter) and has a single arm that provides complete openness in the scanning area between the tip and sample. The STM head consists of two piezoelectric tubes (PTs), a piezoelectric scanning tube (PST) mounted on a well‐polished zirconia shaft, and a large PT housed in a sapphire tube called the motor tube. The main body of the STM head is made of tantalum. In this design, we fixed the sapphire tube to the frame with screws so that the tube's position can be changed quickly. To analyse the stiffness of the STM head unit, we identified the lowest eigenfrequencies with 3 and 4 kHz in the bending modes, 8 kHz in a torsional mode, and 9 kHz in a longitudinal mode by finite element analysis, and also measured the low drift rates in the X–Y plane and in the Z direction. The high performance of the home‐built STM was demonstrated by images of the hexagonal graphite lattice at 300 K and in a sweeping magnetic field from 0 T to 9 T. Our results confirm the high stability, vibration resistance, insensitivity to high magnetic fields and the application potential of our newly developed STM for the investigation of low‐frequency systems with high static support stiffness in physics, chemistry, material and biological sciences.