Abstract:Principal component analysis is commonly used as a pre-step before employing a classifier to avoid the negative effect of the dimensionality and multicollinearity. The performance of a classifier is severely affected by the deviations from the linearity of the data structure and noisy samples. In this paper, we propose a new classification system that overcomes the drawback of these crucial problems, simultaneously. Our proposal is relying on the kernel principal component analysis with a proper parameter sele… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.