2021
DOI: 10.1002/pamm.202100033
|View full text |Cite
|
Sign up to set email alerts
|

An embedded domain method for non‐linear structural membranes

Abstract: An embedded domain method for structural membranes in large displacement theory is outlined. The membrane is immersed in a three-dimensional background mesh with level-set data at the nodes. The mechanical model for the implicitly defined membrane is formulated using the Tangential Differential Calculus (TDC). The embedded domain method has to properly consider the numerical integration and boundary conditions within the background elements cut by the membrane. Furthermore, stabilization is required to address… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
9
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(9 citation statements)
references
References 5 publications
0
9
0
Order By: Relevance
“…\end{equation}$$The divergence theorem for the embedded manifolds in Ω is normalΩw·divnormalΓv·ϕdΩ=normalΩbold-italicxnormalΓw·v·ϕdΩ+normalΩϰ·w·bold-italicv·bold-italicn·ϕdΩ+Ωw·bold-italicv·bold-italicq·bold-italicq·bold-italicm·ϕdΩ.$$\begin{align} \int _{\Omega }w\cdot \mathrm{div}_{\Gamma }\bm{v}\cdot {\left\Vert \nabla \phi \right\Vert} \,\mathrm{d}\Omega = & -\int _{\Omega }\nabla _{\bm{x}}^{\Gamma }w\cdot \bm{v}\cdot {\left\Vert \nabla \phi \right\Vert} \,\mathrm{d}\Omega +\int _{\Omega }\varkappa \cdot w\cdot {\left(\bm{v}\cdot \bm{n}\right)}\cdot {\left\Vert \nabla \phi \right\Vert} \,\mathrm{d}\Omega \\ & +\int _{\partial \Omega }w\cdot {\left(\bm{v}\cdot \bm{q}\right)}\cdot {\left(\bm{q}\cdot \bm{m}\right)}\cdot {\left\Vert \nabla \phi \right\Vert} \,\mathrm{d}\partial \Omega .\nonumber\end{align}$$The expression false∥ϕfalse∥$\Vert \nabla \phi \Vert$ comes from the co‐area formula [3–6, 12]. For a more detailed description see the contribution [12] of these conference proceedings and [6].…”
Section: Geometry and Differential Operatorsmentioning
confidence: 99%
See 4 more Smart Citations
“…\end{equation}$$The divergence theorem for the embedded manifolds in Ω is normalΩw·divnormalΓv·ϕdΩ=normalΩbold-italicxnormalΓw·v·ϕdΩ+normalΩϰ·w·bold-italicv·bold-italicn·ϕdΩ+Ωw·bold-italicv·bold-italicq·bold-italicq·bold-italicm·ϕdΩ.$$\begin{align} \int _{\Omega }w\cdot \mathrm{div}_{\Gamma }\bm{v}\cdot {\left\Vert \nabla \phi \right\Vert} \,\mathrm{d}\Omega = & -\int _{\Omega }\nabla _{\bm{x}}^{\Gamma }w\cdot \bm{v}\cdot {\left\Vert \nabla \phi \right\Vert} \,\mathrm{d}\Omega +\int _{\Omega }\varkappa \cdot w\cdot {\left(\bm{v}\cdot \bm{n}\right)}\cdot {\left\Vert \nabla \phi \right\Vert} \,\mathrm{d}\Omega \\ & +\int _{\partial \Omega }w\cdot {\left(\bm{v}\cdot \bm{q}\right)}\cdot {\left(\bm{q}\cdot \bm{m}\right)}\cdot {\left\Vert \nabla \phi \right\Vert} \,\mathrm{d}\partial \Omega .\nonumber\end{align}$$The expression false∥ϕfalse∥$\Vert \nabla \phi \Vert$ comes from the co‐area formula [3–6, 12]. For a more detailed description see the contribution [12] of these conference proceedings and [6].…”
Section: Geometry and Differential Operatorsmentioning
confidence: 99%
“…For the definition of the BVP, some vector fields are required: along the boundaries ΩX$\partial \Omega _{\bm{X}}$ and Ωx$\partial \Omega _{\bm{x}}$ unit normal vectors M and m , respectively, N and n are the respective unit normal vectors on the level sets normalΓXc$\Gamma _{\!\!\bm{X}}^c$ and normalΓxc$\Gamma _{\!\bm{x}}^c$ in the bulk domains, and Q and q the conormal vectors on the boundaries. More details of these vector‐fields can be found in the literature [6] and [12].…”
Section: Mechanical Modelmentioning
confidence: 99%
See 3 more Smart Citations