2022
DOI: 10.1515/cmam-2021-0195
|View full text |Cite
|
Sign up to set email alerts
|

An Efficient Numerical Method for Time Domain Electromagnetic Wave Propagation in Co-axial Cables

Abstract: In this work, we construct an efficient numerical method to solve 3D Maxwell’s equations in coaxial cables. Our strategy is based upon a hybrid explicit-implicit time discretization combined with edge elements on prisms and numerical quadrature. One of the objectives is to validate numerically generalized telegrapher’s models that are used to simplify the 3D Maxwell equations into a 1D problem. This is the object of the second part of the article.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
5
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
3

Relationship

1
2

Authors

Journals

citations
Cited by 3 publications
(5 citation statements)
references
References 22 publications
0
5
0
Order By: Relevance
“…The last time scheme we consider consists in treating implicitly the part of the stiffness bilinear form that depends solely on the derivative in the thickness direction while the remaining part is treated explicitly. This approach is linked to the one presented in References 21‐23 and is referred to as an implicit–explicit strategy. It reads mfrakturh()boldufrakturhn+1prefix−2boldufrakturhn+boldufrakturhnprefix−1normalΔt2,boldvfrakturh+false(afrakturhδprefix−δprefix−2aνν,frakturhfalse)false(boldufrakturhn,boldvfrakturhfalse)+δprefix−2aνν,frakturhfalse(false{boldufrakturhnfalse}θ,boldvfrakturhfalse)=false(tn;boldvfrakturhfalse),$$ {m}_{\mathfrak{h}}\left(\frac{{\mathbf{u}}_{\mathfrak{h}}^{n+1}-2{\mathbf{u}}_{\mathfrak{h}}^n+{\mathbf{u}}_{\mathfrak{h}}^{n-1}}{\Delta {t}^2},{\mathbf{v}}_{\mathfrak{h}}\right)+\left({a}_{\mathfrak{h}}^{\delta }-{\delta}^{-2}{a}_{\nu \nu, \mathfrak{h}}\right)\left({\mathbf{u}}_{\mathfrak{h}}^n,{\mathbf{v}}_{\mathfrak{h}}\right)+{\delta}^{-2}{a}_{\nu \nu, \mathfrak{h}}\left({\left\{{\mathbf{u}}_{\mathfrak{h}}^n\right\}}_{\theta },{\mathbf{v}}_{\mathfrak{h}}\right)=\ell \left({t}^n;{\mathbf{v}}_{\mathfrak{h}}\right), $$ completed with null initialization (12).…”
Section: Robust Time Discretizations Wrt the Plate Thicknessmentioning
confidence: 99%
See 4 more Smart Citations
“…The last time scheme we consider consists in treating implicitly the part of the stiffness bilinear form that depends solely on the derivative in the thickness direction while the remaining part is treated explicitly. This approach is linked to the one presented in References 21‐23 and is referred to as an implicit–explicit strategy. It reads mfrakturh()boldufrakturhn+1prefix−2boldufrakturhn+boldufrakturhnprefix−1normalΔt2,boldvfrakturh+false(afrakturhδprefix−δprefix−2aνν,frakturhfalse)false(boldufrakturhn,boldvfrakturhfalse)+δprefix−2aνν,frakturhfalse(false{boldufrakturhnfalse}θ,boldvfrakturhfalse)=false(tn;boldvfrakturhfalse),$$ {m}_{\mathfrak{h}}\left(\frac{{\mathbf{u}}_{\mathfrak{h}}^{n+1}-2{\mathbf{u}}_{\mathfrak{h}}^n+{\mathbf{u}}_{\mathfrak{h}}^{n-1}}{\Delta {t}^2},{\mathbf{v}}_{\mathfrak{h}}\right)+\left({a}_{\mathfrak{h}}^{\delta }-{\delta}^{-2}{a}_{\nu \nu, \mathfrak{h}}\right)\left({\mathbf{u}}_{\mathfrak{h}}^n,{\mathbf{v}}_{\mathfrak{h}}\right)+{\delta}^{-2}{a}_{\nu \nu, \mathfrak{h}}\left({\left\{{\mathbf{u}}_{\mathfrak{h}}^n\right\}}_{\theta },{\mathbf{v}}_{\mathfrak{h}}\right)=\ell \left({t}^n;{\mathbf{v}}_{\mathfrak{h}}\right), $$ completed with null initialization (12).…”
Section: Robust Time Discretizations Wrt the Plate Thicknessmentioning
confidence: 99%
“…Theorem 2. We denote by 𝜒 ⋆ the condition number of the linear system (23) preconditioned by the operator a 𝛿 𝔥,imex (⋅, ⋅), namely…”
Section: Conditioning Analysis Of the Implicit Schemementioning
confidence: 99%
See 3 more Smart Citations