2005
DOI: 10.1016/j.msea.2004.07.017
|View full text |Cite
|
Sign up to set email alerts
|

An EBSP study of directionally recrystallized cold-rolled nickel

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
23
0
1

Year Published

2007
2007
2020
2020

Publication Types

Select...
7
1

Relationship

1
7

Authors

Journals

citations
Cited by 26 publications
(24 citation statements)
references
References 42 publications
0
23
0
1
Order By: Relevance
“…An example of this can be found in the recrystallization of metals. Li and Baker (2005) found that the primary recrystallization of cold-rolled, high purity nickel at 400°C resulted in a weak cube texture with a lesser {124}(21-1) component. After secondary recrystallization, only the {124}(21-1); oriented grains remained.…”
Section: Interpretation and Discussionmentioning
confidence: 99%
“…An example of this can be found in the recrystallization of metals. Li and Baker (2005) found that the primary recrystallization of cold-rolled, high purity nickel at 400°C resulted in a weak cube texture with a lesser {124}(21-1) component. After secondary recrystallization, only the {124}(21-1); oriented grains remained.…”
Section: Interpretation and Discussionmentioning
confidence: 99%
“…Both Baker et al [36,37] and Zhang et al [38,41,44] have found that in particle-free metals or alloys, there is a lower limit to the annealing temperature for columnar grain formation through directional secondary Si 1373 NS 3-30 [13] Ni-based superalloy PWA1123 NS NS NS [14] Fe-3wt-%Si 1323-1623 320-550 increased with increasing T 19 [15] Ni-base superalloy TMO-2 1563 25 50-100 [16] Ni-base superalloy MA6000 1123-1373 NS NS [17] Ni-base superalloy MA6000 1373-1573 NS 48-600 [18] Ni-base superalloy APK-6 1493 NS 2.0-20.0 [19] Ni-base superalloy MA6000 and MA760 1523 NS 2-200 K min −1 (heating rate) [20] Ni-base superalloy MA6000 1443 25 38 [21] Fe-based Superalloy MA957 1673 NS 20-75 [22] Ni-base superalloy MA6000 1623 40 38 [23] Ni-base superalloy MA6000 1223-1503 NS 15-400 [24] Ni-based superalloy PM3030 1503 100 NS [25] Ni-base superalloy MA6000 and MA760 1573 40 38 [26] Fe-based Superalloy MA 956 and MA957 1533-1613 50-140 24-75 [27] Ni-base superalloy MA6000 and MA760 1448 NS 38 [28] Ni-base superalloy MA760 and iron-based superalloy MA 956 ∼1523 NS 48-600 [29] Ni-base superalloy MA6000 1223-1273 NS 10-100 [30] Ni-base superalloy SRR99 ∼1533 NS 5 [31] Ni-base superalloy MA6000 1573 NS 38 [32] N i 3 Al 1698 NS 25-100 [33] Ni-base superalloy APK-6 1493 NS NS [34] TiAl-based alloy 1553-1593 NS 1.62 and 4.02 K min −1 (heating rate) [35] Cu 643-743 70-270 2-600 [36] Ni 1273 ∼1000 and 50 2-100 [37] Ni 1073-1273 ∼1000 and 50 2-100 [38] Iron 973-1123 ∼200 3.6-90 [39] Iron 1123-1473 ∼200 and 400 3.6-90 [40] Iron 1123 ∼200 0.36-90 [41] Iron 948-1173 ∼200 1.08-108 …”
Section: Annealing Temperaturementioning
confidence: 99%
“…Note that the temperature gradient along the drawing direction depends on the experimental set-up used for directional recrystallisation. Usually, the temperature gradient of air-cooled furnaces is tens to several hundreds of K cm −1 [7][8][9]15,26,35,36,45,47,57] while furnaces designed with a heat sink can provide a temperature gradient from 100 to 1000 K cm −1 [3][4][5][6]8,[35][36][37][38][39][40][41][42][43][44]46,48,49,52,53,55,56], depending on the furnace layout and cooling system. The heating source, cooling method and temperature gradient noted in various papers are listed in Table 2.…”
Section: Temperature Gradientmentioning
confidence: 99%
See 1 more Smart Citation
“…Eles identificaram que a curvatura final dos grãos está relacionada ao número de lados do grão e também à diferença de energias entre os contornos formados pelo encontro do grão com orientação preferencial e seus vizinhos, de orientação aleatória, sendo γg-m/γm-m. O modelo de Glicksman et al (2007) SZPUNAR, 2001;PARK et al, 2004;SAMAJDAR et al, 1999). A mesma relação é verificada nos grãos-ilha formados pela recristalização direcional no níquel (LI;BAKER, 2005) e no ferro puro (ZHANG et al, 2006 PEASE et al, 1981;PARK et al, 2004;CHEN et al, 2003). Outros modelos consideram que a anisotropia na mobilidade dos contornos é o fator necessário ao crescimento descontínuo de algumas orientações sobre a matriz (HARASE, 1995).…”
Section: = ( − )unclassified